Kuhni-nn.ru

Кухни НН
0 просмотров
Рейтинг статьи
1 звезда2 звезды3 звезды4 звезды5 звезд
Загрузка...

От чего зависит яркость свечения светодиода и как ее регулировать

От чего зависит яркость свечения светодиода и как ее регулировать

Рядового потребителя при покупке осветительного прибора интересует не напряжение или ток, а яркость светодиода, так как она отличается от показателя других ламп. Внедрение новых технологий требует иного подхода к характеристикам светотехники. Основные параметры, в том числе яркость свечения, хорошие производители обозначают в маркировке, на упаковке, в технической документации. Для правильного выбора необходимо знать значение букв и цифр, уметь определить, какой прибор допускает регулировку яркости, какой – нет.

«Пороги» прямого напряжения

Как показано на графике выше, связь между током и напряжением диода не является дискретной. Эта связь экспоненциальна, а не линейна; ток плавно увеличивается от нуля до больших значений. Таким образом, если мы интерпретируем «порог» как своего рода мгновенный переход из одного состояния (например, «непроводящий») в другое состояние (например, «проводящий»), то в электрическом поведении диода нет настоящих «порогов».

При этом экспоненциальный характер ВАХ диода приводит к значениям напряжения, которые в контексте практических инженерных задач очень похожи на пороговые значения. Таким образом, часто бывает удобно говорить о двух напряжениях, обозначенных на диаграмме ниже, как если бы они были пороговыми.

Рисунок 2 Пороговые напряжения диода Рисунок 2 – Пороговые напряжения диода

Первый порог, 0,5 В, определяет переход от незначительно малого тока к не незначительно малому току. Таким образом, когда мы обсуждаем практические схемы вместо точных научных подробностей, мы можем сказать, что обычный кремниевый диод не позволяет току течь, пока прямое напряжение не превысит 0,5 В.

Второй порог, 0,7 В, определяет точку, в которой наклон кривой ВАХ стал чрезвычайно высоким; мы можем использовать 0,7 В в качестве аппроксимации напряжения, падающего на кремниевом диоде в режиме полной проводимости, поскольку напряжения, значительно превышающие 0,7 В, соответствуют очень большим значениям тока.

Подтверждение закона Ома

Бум исследования электрических явлений пришёлся на конец XVIII – начало XIX веков. Такие учёные, как Фарадей, Ампер, Вольт, Эрстед, Кулон, Лачинов, Ом провели ряд экспериментов, которые позволили Максвеллу создать теорию электромагнитных явлений.

Читайте так же:
Как сделать подсветку дома светодиодной лентой с выключателя

Зависимость силы тока от напряжения - формула, график и законы

Огромную роль в открытии новых знаний сыграл опыт Ома исследовавшего, от чего зависит сила тока в цепи. Немецкий физик ставил опыты над проводимостью различных материалов. Для этого он использовал электрическую цепь, в разрыв которой подключал проводники разной длины и замерял силу тока.

Изначально учёный не смог установить закономерность. Всё дело в том, что для своих опытов Ом использовал химическую батарею. Друг учёного Поггендорф предложил взять термоэлектрический источник тока. В итоге физик смог проследить зависимость. Описал он её так: частное от a, разделённого на l + b, где b определяет интенсивность воздействия на проводника длиною l, причём a и b — постоянные, зависящие соответственно от действующей силы и сопротивления элементов цепи.

Обычно при изучении закона в седьмом классе средней школы учитель демонстрирует эту зависимость на практических уроках. Для этого чтобы ученики удостоверились в справедливости утверждения, преподаватель собирает электрическую цепь, в состав которой входят:

  • вольтметр – прибор для измерения напряжения, включается параллельно измеряемому проводнику;
  • амперметр – устройство для замера тока, подключается последовательно с измеряемым телом;
  • регулируемый источник электродвижущей силы (ЭДС).

Суть опыта заключается в подключении проводников с разной длиной. Измеренные результаты заносят в таблицу. Она должна иметь примерно следующий вид:

Первое телоВторое телоТретье тело
U, ВI, АU, ВI, АU, ВI, А
10,510,410,2
2120,620,3
31,530,830,4
424140,5

Проведя анализ таблицы, можно сделать вывод. Если для любого тела напряжение разделить на соответствующую ему силу тока, то получится одно и то же число. Следовательно, это отношение является свойством проводника. Для первого оно равно двум, второго – пяти, а третьего – десяти. При одинаковых токах в третьем случае число больше, значит, это тело оказывает большее сопротивление току.

Полученные значения по факту и являются величинами, обратными проводимости. Обозначают их буквой R (resistance).

Изменение яркости светодиодов при работе в группе

При проектировании схемы управления группой светодиодов может возникнуть необходимость диммирования проектируемого светильника. Мы попробуем описать поведение светодиодов , а именно изменение яркости, при варьировании тока, и предложим решения для улучшения работы устройства.

Читайте так же:
Выключатель автоматический для осветительных приборов

Светодиоды на заводе сортируются по силе света при определенной силе тока. Если нам необходимо использовать группу светодиодов в одном светильнике, то безусловно нам нужно стремиться к одинаковой силе света каждого диода в группе. А это возможно только на токе, при котором проходила сортировка светодиодов. Этот ток можно назвать «групповым».

Когда возникает необходимость корректирования яркости светодиодов?

  1. Если яркость группы светодиодов при заданном токе не отвечает необходимым параметрам проектируемого светильника, и возникает необходимость изменить групповой ток в ту или иную сторону.
  2. Если используются светодиоды с различными бинами по яркости.
  3. Если требуется диммирование яркости.

Эксперимент № 2: Получение изображения при помощи линзы

Для того чтобы управлять световыми пучками, т. е. изменять направление лучей, применяют специальные приборы, например, лупу, микроскоп. Основной частью этих приборов является линза.

Линзами называются прозрачные тела, ограниченные с двух сторон сферическими поверхностями

Линзы бывают двух видов — выпуклые и вогнутые.

Линза, у которой края намного тоньше, чем середина, является выпуклой (показать пример).

Линза, у которой края толще, чем середина, является вогнутой (показать пример).

Гипотеза работы: с помощью линз можно не только собирать или рассеивать лучи света, но и получать различные изображения предмета.

Цель опыта: получить с помощью собирающей линзы различные изображения светящейся свечи.

Для выполнения эксперимента мне необходимы следующие приборы и материалы: собирающая линза, экран, свеча, линейка.

При выполнении опыта необходимо соблюдать технику безопасности:

  • При работе с линзами не следует касаться оптического стекла руками, чтобы не загрязнить его.
  • При обнаружении трещин на стекле и линзах нужно прекратить работу и сообщить учителю.
  • При работе со свечами соблюдать правила пользования огнем, не подносить к горящей свече бумагу. Перед работой устойчиво укрепите свечку на подставке.

1. Определим фокусное расстояние линзы. Для этого при помощи линзы получим уменьшенное изображение окна. Измерим расстояние от линзы до изображения — это будет приблизительно фокусное расстояние линзы F. Оно будет измерено тем точнее, чем дальше находится экран от окна.

Фокусное расстояние собирающей линзы F = 12 см.

Читайте так же:
Веревочный выключатель света подключение

2. Расположим свечу за фокусом линзы, её изображение пропадёт, но по другую сторону от линзы, далеко от неё, на экране получим новое изображение. Это изображение будет увеличенным и перевёрнутым по отношению к свече.

А.В.Перышкин, Физика – 8, ЭФУ, стр. 211, рис.158

А.В.Перышкин, Физика – 8, ЭФУ, стр. 211, рис.158

Изображение, даваемое линзой, когда расстояние от источника света больше двойного фокуса

Расстояние между свечой и линзой 22 см.

3. Теперь расстояние от источника света до линзы возьмём больше двойного фокусного расстояния линзы. Передвигая за линзой экран, получим на нём действительное, уменьшенное и перевёрнутое изображение света. Относительно линзы изображение будет находиться между фокусом и двойным фокусным расстоянием.

А.В.Перышкин, Физика – 8, ЭФУ, стр. 211, рис.159

А.В.Перышкин, Физика – 8, ЭФУ, стр. 211, рис.159

Изображение, даваемое линзой, когда предмет находится между фокусом и двойным фокусом

Расстояние между свечой и линзой 33 см.

Такое изображение можно получить с помощью фотоаппарата.

4. Если предмет поместить между фокусом и линзой, то его изображение на экране не получится. Посмотрев на свечу через линзу, можно увидеть мнимое,прямое и увеличенное изображение. Оно находится между фокусом и двойным фокусом.

А.В.Перышкин, Физика – 8, ЭФУ, стр. 211, рис.160

А.В.Перышкин, Физика – 8, ЭФУ, стр. 211, рис.160

Изображение, даваемое линзой, когда предмет находится между фокусом и линзой

Таким образом, размеры и расположение изображения предмета в собирающей линзе зависят от положения предмета относительно линзы.

В зависимости от того, на каком расстоянии от линзы находится предмет, можно получить или увеличенное изображение, или уменьшенное, т.е. гипотеза мною подтверждена.

Глаз иногда называют живым фотоаппаратом, так как оптическая система глаза, дающая изображение, сходна с объективом фотоаппарата, но она значительно сложнее.

Хотелось бы привести интересные факты о линзах:

1. В кладе, зарытом около тысячи лет назад викингами на шведском острове Готланд, найдены линзы сложной асферической формы из горного хрусталя.

Рене Декарт рассчитал такую форму линз только в 17 веке, но так и не смог их изготовить.

2. Первые линзы изобрел Леонардо да Винчи, но тогда они были изготовлены из стекла. Сейчас же чаще используются полимерные материалы

Полярность светодиодов

Полярность светодиодов

При неправильном включении светодиод может сломаться. Поэтому важно уметь определять полярность источника света. Полярность – это способность пропускать электрический ток в одном направлении.

Читайте так же:
Концевой выключатель света багажника

Полярность моно определить несколькими способами:

  • Визуально. Это самый простой способ. Для нахождения плюса и минуса у цилиндрического диода со стеклянной колбой нужно посмотреть внутрь. Площадь катода будет больше, чем площадь анода. Если посмотреть внутрь не получится, полярность определяется по контактам – длинная ножка соответствует положительному электроду. Светодиоды типа SMD имеют метки, указывающие на полярность. Они называются скосом или ключом, который направлен на отрицательный электрод. На маленькие smd наносятся пиктограммы в виде треугольника, буквы Т или П. Угол или выступ указывают на направление тока – значит, этот вывод является минусом. Также некоторые светодиоды могут иметь метку, которая указывает на полярность. Это может быть точка, кольцевая полоска.
  • При помощи подключения питания. Путем подачи малого напряжения можно проверить полярность светодиода. Для этого нужен источник тока (батарейка, аккумулятор), к контактом которого прикладывается светодиод, и токоограничивающий резистор, через который происходит подключение. Напряжение нужно повышать, и светодиод должен загореться при правильном включении.
  • При помощи тестеров. Мультиметр позволяет проверить полярность тремя способами. Первый – в положении проверка сопротивления. Когда красный щуп касается анода, а черный катода, на дисплее должно загореться число , отличное от 1. В ином случае на экране будет светиться цифра 1. Второй способ – в положении прозвонка. Когда красный щуп коснется анода, светодиод загорится. В ином случае он не отреагирует. Третий способ – путем установки светодиода в гнездо для транзистора. Если в отверстие С (коллектор) будет помещен катод – светодиод загорится.
  • По технической документации. Каждый светодиод имеет свою маркировку, по которой можно найти информацию о компоненте. Там же будет указана полярность электродов.

Выбор способа определения полярности зависит от ситуации и наличия у пользователя нужного инструмента.

Простейшие задачи

Зависимость, установленную экспериментальным путём, широко используют при проектировании электронных схем различных устройств. С помощью закона Ома рассчитывают нужное сопротивление резисторов для той или иной цепи, вычисляют значение тока при определённом напряжении.

Читайте так же:
Длительно допустимый ток кабеля кгэш

Вот некоторые из таких заданий:

Простейшие задачи по физике

Формула электрической зависимости силы тока от напряжения

  1. Пусть имеется схема, подключённая к источнику, выдающему 60 вольт. Определить, какой ток потечёт через резистор 30 Ом. Согласно правилу, связывающему три фундаментальных величины: I = U / R. Так как по условию все нужные данные известны, то необходимо их просто подставить в формулу и выполнить вычисления: I = 60 В / 30 Ом = 2 А. Задача решена. Ответ: через резистор потечёт ток равный двум амперам.
  2. Построить графики зависимости для двух проводников имеющих сопротивление пять и пятнадцать ом. В задании требуется нарисовать ВАХ. Так как напряжения не указаны, то их можно брать любыми. Используя формулу Ома, нужно определить ток для произвольных значений потенциала. График зависимости – прямая. Значит, нужно отложить две точки. Чтобы правильно разметить значения необходимо выбрать масштаб. Поэтому вначале следует посчитать максимальное значение тока. Пусть за наибольшее напряжение будет принято U = 50 В. Тогда, Im1 = 50 / 5 = 10 А, Im2 = 50 / 10 = 5 А. Теперь останется отложить полученный результат на графике и провести линию через ноль и эти точки.
  3. Определить ток, потребляемый электрочайником, если его спираль имеет сопротивление 40 Ом, а напряжение сети равно 220 вольт. Пример решается по простой формуле: I = U / R = 220 В / 40 Ом = 5, 5 А. Задача решена.
  4. В вольтметре, показывающем 120 вольт, ток составляет 15 миллиампер. Найти сопротивление прибора. Из формулы зависимости можно выразить сопротивление. Оно будет равно: R = U / I. При этом, чтобы получить правильный ответ, миллиамперы следует перевести в амперы. Решение будет иметь вид: R = 120 В / 15 * 10 -3 А = (120 * 10 3 ) / 15 = 8 * 10 3 Ом = 8 кОм. Итак, внутреннее сопротивление вольтметра составит восемь килоом.

Следует отметить, что в школьных задачах не учитываются характеристики источника тока.

По умолчанию считают, что он имеет бесконечно малое внутреннее сопротивление. Но на самом деле это не так. Электродвижущая сила генератора электрической энергии затрачивается как на внутренние, так и внешние потери. Поэтому формула закона Ома для полной цепи имеет вид: I = (U0 + U) / R + r, где: U0 – внутреннее падение напряжения, r0 – сопротивление источника.

голоса
Рейтинг статьи
Ссылка на основную публикацию
Adblock
detector