Kuhni-nn.ru

Кухни НН
0 просмотров
Рейтинг статьи
1 звезда2 звезды3 звезды4 звезды5 звезд
Загрузка...

Устройство электрохимзащиты для газопровода

На состояние стальных трубопроводов оказывает влияние влажность почвы, ее структура и химический состав. Температура сообщаемого по трубам газа, блуждающие в земле токи, вызванные электрифицированным транспортом и климатические условия в целом.

  • Поверхностная. Распространяется сплошным слоем по поверхности изделия. Представляет наименьшую опасность для газопровода.
  • Местная. Проявляется в виде язв, щелей, пятен. Наиболее опасный вид коррозии.
  • Усталостное коррозионное разрушение. Процесс постепенного накопления повреждений.

Механизм разрушения металлов при коррози

Методы электрохимзащиты от коррозии:

  • пассивный метод;
  • активный метод.

Система защитных покрытий труб

Суть пассивного метода электрохимзащиты заключается в нанесении на поверхность газопровода специального защитного слоя, препятствующего вредному воздействию окружающей среды. Таким покрытием может быть:

  • битум;
  • полимерная лента;
  • каменноугольный пек;
  • эпоксидные смолы.

На практике редко получается нанести электрохимическое покрытие равномерно на газопровод. В местах зазоров с течением времени металл все же повреждается.

Активный метод электрохимзащиты или метод катодной поляризации заключается в создании на поверхности трубопровода отрицательного потенциала, предотвращающего утечку электричества, тем самым предупреждая появление коррозии.

Электрохимическая защита

Достаточно результативный способ защиты металлоконструкций от электрохимической коррозии. Иногда воссоздать лакокрасочную оболочку или защитное оберточное покрытие просто невозможно. Вот в таких случаях и уместно применение электрохимической защиты.

Электрохимическая защита от коррозии

  • Используется метод в ситуациях, когда потенциал свободной коррозии пребывает в области усиленного распада основного металла или перепассивации. То есть, когда металлоконструкция интенсивно разрушается.
  • При электрохимической защите к изделию из металла подключают постоянный электрический ток. Благодаря ему на поверхности металлической конструкции образуется катодная поляризация электродов микрогальванических пар и анодные области становятся катодными. А вследствие негативного влияния коррозии разрушается не металл, а анод.
  • Электрохимическая защита может быть анодной или катодной: это будет зависеть от того, в какую сторону сдвинется потенциал металла (в положительную или в отрицательную).

Типы ЭХЗ

Различают 2 вида ЭХЗ от коррозии:

  • анодная;
  • катодная и ее разновидность — протекторная.

Анодная

При анодной защите потенциал металла смещается в положительную сторону. Ее эффективность зависит от свойств металла и электролита. Методика используется для конструкций из углеродистых, высоколегированных и нержавеющих сталей, титановых сплавов и различных пассивирующихся металлов. Такая ЭХЗ отлично решает поставленные задачи в средах, хорошо проводящих ток.

Анодная электрохимзащита применяется реже, чем катодная, поскольку к защищаемому объекту выдвигается немало строгих требований. Однако у нее есть свои преимущества: значительное замедление скорости коррозионного процесса, исключение возможности попадания продуктов коррозии в среду или производимую продукцию. Оборудование ЭХЗ этого типа выбирают на основе малорастворимых элементов: платины, нержавеющих высоколегированных сплавов, никеля, свинца.

Читайте так же:
Источник стабильного тока для светодиодов

Анодная защита реализуется различными способами: смещением потенциала в положительную сторону посредством источника внешнего тока или введением окислителей в коррозионную среду.

Катодная

Катодная электрохимзащита используется в случаях, когда металлу не присуща склонность переходить в пассивное состояние. Ее суть заключается в приложении к металлоизделию внешнего тока от отрицательного полюса, поляризующего катодные участки, тем самым приближая показатель потенциала к анодным. Положительный полюс, который имеет источник тока, присоединяется к аноду, за счет чего коррозия защищаемого объекта минимизируется. При этом анод постепенно разрушается, требуя замены.

Катодная защита может быть реализована различными способами:

  • поляризация от внешнего источника электротока;
  • снижение скорости протекания катодного процесса;
  • контакт с металлом, потенциал коррозии у которого в этой среде более электроотрицательный.

Поляризация от источника электротока, расположенного снаружи, часто используется при защите конструкций, находящихся в воде или почве. Этот вид системы ЭХЗ применяется для олова, алюминия, цинка, углеродистых и легированных сталей. В качестве внешнего источника тока выступают станции катодной защиты.

Протекторная

Строительство ЭХЗ протекторного типа подразумевает применение протектора. В этом случае к защищаемому сооружению присоединяют металл, имеющий более электроотрицательный потенциал. В результате разрушается не металлический объект, а протектор, который постепенно корродирует и требует замены на новый.

Данный тип электрохимзащиты эффективен в тех случаях, когда переходное сопротивление между окружающей средой и протектором небольшое. У каждого протектора есть свой радиус действия — это максимальное расстояние, на которое его можно удалить, не рискуя потерять защитный эффект.

Протекторная ЭХЗ применяется для предохранения от коррозионного разрушения сооружений, находящихся в нейтральных средах: в воздухе, почве, морской или речной воде. Протекторы для электрохимической защиты трубопроводов изготавливают из магния, цинка, алюминия, железа с дополнительным введением легирующих компонентов.

Для обеспечения высокого уровня протекторной защиты нужно правильно выбрать тип протектора в зависимости от объекта ЭХЗ (корпуса судов, резервуары с нефтепродуктами и пожарной водой, нефте газопроводы и другие металлоконструкции), а также важна среда где будет установлена протекторная группа (грунт, морская или речная вода, подтоварная вода). Данное условие является необходимым для обеспечения безопасности эксплуатации объекта ЭХЗ и увеличит эффективность протекторной защиты.

Защита от блуждающих токов

Чтобы предотвратить разрушения, вызываемые блуждающими токами, оборудование от них ограждают при помощи катодной защиты. Принцип ее работы основан на исключении образования анодных зон на защищаемом объекте, оставив только катодные. Для этого используют дополнительный источник постоянного тока, отрицательный полюс которого подключают к защищаемому объекту (рельсам), а положительный – к дополнительным электродам (протекторным анодам), расположенным вдоль защищаемого объекта. Источником тока является станция катодной защиты.

Читайте так же:
Как подобрать ток для светодиодов

Подключение катодной станции

Подключение катодной станции

В результате действия катодной защиты разрушение переносится с полезных металлоконструкций на вспомогательные аноды, называемые еще «жертвенными». Дополнительно на металлоконструкции защищаемого объекта наносят защитные покрытия, препятствующие коррозии.

Принцип работы катодной защиты

Принцип работы катодной защиты

Но у катодной защиты есть недостатки:

  • перезащита – при превышении защитного потенциала происходит коррозия защищаемого объекта;
  • при неправильно рассчитанной защите возможна ускоренная коррозия расположенных рядом трубопроводов и кабелей.

Дополнительными мерами защиты от блуждающих токов являются:

Принцип работы анодной защиты металла

Принцип работы анодной антикоррозионной защиты

В процессе применения анодной защиты металлических изделий электрический потенциал защищаемой конструкции увеличивается, в результате чего достигается устойчивое пассивное состояние системы. Среди главных достоинств анодной электрохимической защиты стоит отметить существенное замедление скорости развития коррозии, а также тот факт, что в конечный продукт не попадают результаты этого явления.

Анодную защиту можно осуществить таким способом: сместить потенциал в положительную сторону с помощью источника электрического тока, иногда в коррозионную среду вводятся окислители, повышающие эффективность катодной деятельности на поверхности железа.

Стоит отметить, что анодная защита с использованием различных окислителей по принципу работы имеет общие черты с анодной поляризацией.

Если в процессе защиты железа от коррозии используются пассивирующие ингибиторы, имеющие окисляющие свойства, то под воздействием образовавшегося тока, защищаемый участок переходит в пассивное состояние. К таким ингибиторам можно отнести нитраты, бихроматы, и др. Большим минусом этих устройств является повышенный уровень загрязнения окружающей среды.

Прочистка раковиныЕсли нет времени ждать сантехника, значит необходимо принимать решение по самостоятельной чистке раковины.

Также узнайте, как бороться с засором в унитазе.

При добавлении в сплав различных элементов (зачастую насыщение благородным металлом) протекающая на катоде реакция восстановления деполяризаторов, осуществляется с гораздо меньшим перенапряжением, чем на защищаемом железе.

Если через защищаемое изделие пропустить ток, наблюдается смещение потенциала в положительную сторону.

Воздействие на металлические объекты

В земле находится множество металлических объектов, таких как: различные системы трубопроводов, бронированные кабельные линии, железобетонные фундаменты строений. Так как металл является лучшим проводником по сравнению с землей, то электроток будет проходить по нему, а не по грунту. Место входа называется «катодная зона». Место выхода – «анодная зона».

Читайте так же:
Как починить кабельный провод от телевизора

Возникновение коррозии

Отдельно хотелось бы рассмотреть коррозийные процессы в водопроводных трубах. Подземные воды содержат в себе множество растворимых веществ и являются хорошим проводником. Например, в трубопроводе, находящемся в грунте, образуется коррозия в результате процесса электролиза. Это особенно выражено на участке анодной зоны. В катодной зоне поражения конструкций носят менее разрушительный характер.

В результате крайне разрушительного воздействия на все вышеперечисленные объекты, блуждающие токи способны нанести существенный экономический ущерб.

bluzhdayushhie-toki-korroziya-bluzhdayushhimi-tokamiБлуждающие токи. Коррозия блуждающими токами.

Металлические изделия служат нам не только в атмосферных условиях, но часто находятся в земле. Трубопроводы, по которым текут вода, газ, нефть, очень часто делают из металла и прокладывают под землей. Под землей также размещают кабели, по которым подают электрический ток или осуществляют телеграфно-телефонную связь. Почва, как вам известно, представляет собой смесь различных веществ. В ее состав входят минералы и различные органические вещества, являющиеся продуктами гниения. Почвенная вода всегда содержит растворы солей и кислот, т. е. она электролит. Вот почему так тщательно покрывают изоляционными материалами металлические трубы, прежде чем они будут зарыты в почву. Правда, по своим свойствам почва может быть различна. При раскопке трубопроводов в окрестностях Батуми, проложенных в 1878 г., т. е. труб, которые пролежали в почве около ста лет, выяснилась интересная картина. На отдельных участках не осталось и следа от металлических труб, так как они полностью были разрушены. В то же время в тех местах, где трубы проходили по глинистой почве, они полностью сохранились. Вид их был такой, как будто бы они только что были зарыты в землю. Следовательно, в глинистой почве не было доступа к металлу электролитов и кислорода, способствующих разрушению металла. Трубы здесь были изолированы самой почвой. Вот такую же роль играет покрытие труб различного рода смолами. Однако в больших городах такого рода покрытия не всегда сохраняют металл от разрушения. Коварную роль здесь играет электрический ток.

Причина попадания электрических токов в почву?

В основном электрические токи, или как их еще называют «блуждающие», появляются в больших городах, причинами попадания в почву являются:

городской транспорт (трамваи, метро);

заводы и предприятия, которые используют на своем производстве электросварочные аппараты, электролизные ванны.

В общем можно сказать, что блуждающие токи появляются там, где используют установки постоянного тока.

Читайте так же:
Как установить розетку цвет кабеля

Находящиеся под землей кабельные сети, трубопроводы и разные металлические сооружения, подвергаются сильной коррозии, в районах расположения электротяговых устройств постоянного тока, поскольку в таких случаях в качестве обратного провода используют рельсы, зачастую не имеющие достаточной электрической изоляции относительно земли. Таким образом ток оказывается в почве.

Несмотря на то, что в почве находятся растворы солей, она оказывает хорошее сопротивление блуждающим токам. В случае же наличия металлических проводников, какими будут являться трубы, блуждающий ток устремляется в трубы. Ток не вызывает разрушении при входе в металлическую конструкцию под землей, а при выходе из нее, он разрушает металл.

Зоны блуждающих токов

Чтобы узнать, как ведут себя блуждающие токи, рассмотрим простую схему коррозии подземного трубопровода (рис. 1) в случае, когда обратный ток протекает по рельсам.

bluzhdayushhie-toki-korroziya-bluzhdayushhimi-tokami

Рис.1. Коррозия трубопровода блуждающим током.

В рабочий воздушный провод поступает электрический ток от положительного полюса и по рельсам возвращается обратно к отрицательному полюсу. На некоторых участках пути, рельсы соприкасаются с почвой и часть тока уходит в почву. Также в случае пролегания вблизи рельс стального трубопровода, ток уже потечет не по почве, а по трубе. Итак, путь прохождения блуждающего тока делится на три части:

— Катодная зона, она не является опасной в коррозионном отношении, на этом участке блуждающий ток переходит на трубопровод из почвы.

— Зона, где ток протекает по трубопроводу. На этом участке нет переходов тока. Такая зона тоже не является опасной.

— Анодная зона. На этом участке происходит переход тока из металлического трубопровода в почву. Тут и возникает коррозия трубопровода, которая зависит от величины блуждающего тока. На этом участке возможно появление глубоких язв коррозии и даже разрывов в трубе.

bluzhdayushhie-toki-korroziya-bluzhdayushhimi-tokami

Рис. 2. Чугунная труба, пострадавшая от коррозии вследствие блуждающих токов.

Известны случаи протекания по трубопроводу тока силой до 300 а. Зная силу тока, можно по закону Фарадея подсчитать разрушение металла. Так, например, ток силой до 1 а в течение года разрушает около 9 кг железа, 11 кг меди и 34 кг свинца. Эти цифры показывают, к какому разрушению подземных сооружений может привести блуждающий ток, учитывая, что радиус Действия блуждающего тока, входящего в землю с рельсов электрифицированных железных дорог, определяется иногда несколькими десятками километров. Вот почему в больших городах, где имеется много подземных сооружений, а также разветвленная система подземных сооружений и наземных проводников постоянного электрического тока, необходимо тщательно защищать подземное хозяйство от губительного действия блуждающих токов. Руководители городского хозяйства при постройке новых подземных сооружений должны строго учитывать этого врага металлических изделий, который может нанести непоправимый ущерб и даже бедствие городскому хозяйству. Например, разрушенная блуждающим током труба газопровода может вызвать выход газа из трубы, в которой он протекает, что связано с опасностью возникновения пожара. Нужно сказать, что такие случаи принесли большой ущерб не только городскому хозяйству, по и населению.

Читайте так же:
Выключатель который регулирует яркость света

На рисунке 2 приведена фотография трубы, пострадавшей от коррозии блуждающим током. Как видите, блуждающий ток разрушил трубу так, что в ней образовались сквозные отверстия.

С действием блуждающих токов можно ознакомиться на простом опыте. Соберите установку по схеме,
изображенной на рисунке 3. Здесь медный провод АВ соединен с источником постоянного тока и погружен в 5-процентный раствор поваренной соли в таком количестве желатины, чтобы получилась студенистая масса. К желатине добавьте несколько капель концентрированного раствора красной кровяной соли. Ниже медного провода в желатину погрузите железную пластинку, как это показано на рисунке.

bluzhdayushhie-toki-korroziya-bluzhdayushhimi-tokami

Рис.3. Лабораторный эксперимент для обнаружения блуждающих токов

В цепь постоянного тока включают сопротивление (реостат). Когда сопротивление проводника мало, то весь ток потечет к проводнику и не попадет на железную пластинку. Но если увеличить сопротивление проводника при помощи реостата, то часть тока пойдет по пути наименьшего сопротивления, т. е. через раствор и пластинку. На месте выхода блуждающего тока с железной пластинки обнаружится посинение, указывающее на разрушение железной пластинки, т. е. ее растворение, с образованием ионов железа, которые, взаимодействуя с красной кровяной солью, образует железосинеродистое железо, имеющее синюю окраску. Желатина вводится для того, чтобы образовавшееся синее пятно не расплывалось.

Защита от блуждающих токов при подземной коррозии.

Для борьбы с блуждающими токами в настоящее время разработан ряд мероприятий. Нетрудно понять, что эти мероприятия сводятся к сравнительно простым способам. К таким способам относится тщательная изоляция токонесущих систем, а с другой стороны — так называемый электродренаж. Он заключается в отводе тока по специальным проводам от подземных сооружений на отрицательный полюс электростанции.

Для защиты от коррозии трубопроводов, прокладываемых в земле, обычно применяют битумные покрытия, а для кабеля джутовую обмотку, пропитанную битумными составами.

голоса
Рейтинг статьи
Ссылка на основную публикацию
Adblock
detector