Kuhni-nn.ru

Кухни НН
0 просмотров
Рейтинг статьи
1 звезда2 звезды3 звезды4 звезды5 звезд
Загрузка...

10. 4. Последовательность операций при включении и отключении электрических цепей

10.4. Последовательность операций при включении и отключении электрических цепей

В электрических цепях операции с коммутационными аппаратами выполняются в определенной последовательности и, кроме того, с предупреждением возникновения аварийных ситуаций и повреждения электрооборудования, что и обеспечивается правильностью последовательности выполнения операций.

При отключении электрической цепи, имеющей выключатели, первой выполняется операция отключения выключателя, разрывая токовую цепь и снимая напряжение с отдельных элементов электрической цепи (ЛЭП, трансформатора и т. д.). Вводы выключателей могут оставаться под напряжением со стороны сборных шин.

Последовательность отключения разъединителей следующая: сначала отключают линейные (трансформаторные), а затем шинные разъединители.

При включении электрических цепей сначала включают шинные разъединители на соответствующую систему шин, а затем линейные (трансформаторные).

В ЗРУ 6-10 кВ, в которых линейные (кабельные) разъединители расположены близко от пола и не отгорожены от коридора управления сплошной защитной стенкой, операции с ними опасны для персонала. В этом случае рекомендуется при отключении линии первыми отключить не линейные, а шинные разъединители, расположенные на большом расстоянии от оператора.

При включении электрической цепи операции с выключателями выполняются в последнюю очередь.

Автоматические устройства (АПВ, АВР и др.) выводятся из работы перед отключением выключателя, а вводятся в работу после включения выключателя.

Помимо соблюдения последовательности операций включения и отключения необходимы так называемые проверочные действия в электрических цепях, при которых схемы и режимы их работы не изменяются, а дается лишь информация об их состоянии.

К проверочным действиям относятся проверки режимов работы ПС и оборудования, проводимые до начала переключений, а также в процессе их выполнения.

По результатам таких проверок делают выводы о возможности выполнения переключений; предупреждается возникновение перегрузочных режимов работы оборудования, отклонений напряжений от номинального значения и др.

При переключениях проверке подлежат нагрузки отключаемых (включаемых) цепей, положения коммутационных аппаратов, стационарных заземлителей, отсутствие напряжения на токоведущих частях перед их заземлением.

Обязательными являются проверки положения выключателей на месте их установки, если после отключения выключателей должны выполняться операции с разъединителями или отделителями данных цепей.

В КРУ отключенное положение выключателя проверяется перед каждой операцией перемещения тележки в шкафу КРУ из рабочего в испытательное положение, и наоборот.

Проверку положения выключателя по показаниям сигнальных ламп мнемосхемы измерительных приборов (амперметров, вольтметров, ваттметров) допускается производить при отключении выключателя электрической цепи без проведения в дальнейшем операций с разъединителями, отключения выключателя цепи с последующим проведением операций с разъединителями при помощи дистанционного привода, при включении под нагрузку линии, трансформатора, при подаче и снятии напряжения с шин. В таких случаях нет необходимости проверять действительное положение выключателя на месте его установки, если по сигнальным лампам и измерительным приборам видно, что операция с выключателем состоялась.

Вывод в ремонт линии с учетом проверочных действий производят в следующей последовательности (рис. 10.1):

проверяют возможность отключения линии по режиму работы участка сети (ПС);

на ПС А отключают выключатель линии и по амперметру проверяют отсутствие на ней нагрузки;

на ПС Б проверяют отсутствие нагрузки на линии и отключают ее выключатель;

в РУ проверяют отключенное положение выключателя линии и отключают ее линейные разъединители;

проверяют отключение каждой фазы разъединителей;

на ПС А в РУ проверяют, что выключатель линии находится в отключенном положении;

отключают линейные разъединители и проверяют положение каждой фазы разъединителей.

После проверки отсутствия напряжения на линии с обеих ее сторон накладывают защитные заземления. При включении стационарных заземлителей проверяют положение заземлителя каждой фазы.

Последовательность операций при отключении ЛЭП следующая: отключают устройство АПВ и выключатель линии, линейные и шинные разъединители.

Последовательность операций при включении ЛЭП следующая: включают шинные разъединители на соответствующую систему шин, затем линейные разъединители, выключатель и АПВ линии.

Читайте так же:
Дифференциальный автоматический выключатель окпд 2

Отключение тупиковой ЛЭП начинают с отключения выключателя на питаемой ПС, при этом проверяется готовность потребителей к отключению линии. Затем проверяют отсутствие нагрузки на линии и отключают ее выключатель со стороны питающей ПС.

Включение линии под напряжение и нагрузку выполняют в обратном порядке.

Последовательность операций при отключении и включении транзитных линий и линий дальних передач (напряжением 330 кВ и выше) устанавливается диспетчером.

Включение и отключение одной из спаренных линий, когда другая отключена линейными разъединителями, производится в обычной последовательности, предусмотренной для одиночной линии. Включение одной из спаренных линий, если другая находится в работе, производят с отключением линии, находящейся в работе. Для этого следует отключить выключатель работающей линии со стороны нагрузки, отключить выключатель спаренных линий со стороны питания, включить линейные разъединители с обеих сторон включаемой линии, включить выключатель со стороны питания и включить выключатели обеих линий со стороны нагрузки.

Отключение одной из спаренных линий, когда обе линии включены и находятся под нагрузкой, производят с отключением спаренных линий. Для этого следует отключить выключатели обеих линий со стороны нагрузки, отключить выключатель спаренных линий со стороны питания, отключить линейные разъединители с обеих сторон отключаемой линии, включением выключателя на питающей ПС подать напряжение на оставшуюся в работе линию, замкнуть линию под нагрузку включением ее выключателя у потребителя.

Отключение трехобмоточного трансформатора (автотрансформатора) выполняют в следующей последовательности: отключают выключатели со стороны НН, СН и ВН, отключают трансформаторные и шинные разъединители со стороны НН, а затем в той же последовательности со стороны СН и ВН.

Для включения трансформатора необходимо включить шинные и трансформаторные разъединители с каждой их трех сторон, затем включить выключатели ВН, СН и НН.

Если к нейтрали обмотки трансформатора 35 кВ подключен дугогасящий реактор, то его отключение следует начинать с отключения реактора. Отключение от сети обмотки единственного трансформатора ПС с подключенным к нейтрали дугогасящим реактором или единственной линии, отходящей от ПС с дугогасящим реактором, без отключения этого реактора опасно из-за возможного перекрытия изоляции оборудования 35 кВ.

Данный текст является ознакомительным фрагментом.

Продолжение на ЛитРес

Максимальный радиус шагового напряжения

8 метров – это максимальный радиус поражения (выше 1000 В). Расстояние с 5 метров характеризуется мощностью ниже 1000 В. При спасении пострадавшего стоит действовать рассудительно. Предварительно обмотайте руки сухой тканью, передвигайтесь небольшими шагами, медленно оттяните человека с опасной зоны.

Угроза попадания в область шагового напряжения существует и в бытовых условиях. В такую ситуацию вы можете попасть, прикоснувшись к оголенному проводу неисправного прибора. В таком случае образуется электрическая цепь, опасная для жизни. Для устранения угрозы в щитке устанавливается устройство защитного отключения. Альтернативный вариант – это разработка системы заземления и контроля потенциалов.

Если нас ударило током в квартире, то крайне важно понять, почему так произошло, чтобы избежать в будущем подобных ситуаций. Когда мы меняем выключатель, перевешиваем люстру, меняем розетку, то часто видим, как из стены выходят провода. Как правило, проводов бывает два или больше. Чтобы не усложнять тему, давайте рассмотрим вариант, когда имеется однокнопочный выключатель и люстра. Включили свет — люстра зажглась; выключили свет — погасла. При однокнопочном выключателе из потолка выходят два провода, к которым должна подсоединяться электрическая лампа. Чтобы лампа загорелась, один провод должен быть «Землей», а второй — «Фазой». Провод «Земля» нам не опасен, а провод «Фаза» находится под напряжением. В статье: Провода под напряжением я рассказал о таком замечательном приборе, как пробник. С помощью него как раз и можно определить, какой из проводов является «Землей», а какой «Фазой». Фаза — это тот провод, при касании которого пробником, на нем загорается сигнальная лампочка.

Читайте так же:
Как отличить проходной выключатель от перекрестного

По личному наблюдению я заметил, что некоторые люди почему-то рассуждают так: «А зачем мне пробник?» Я выключатель выключу, свет погаснет, значит тока там нет, и я спокойно подключу люстру. К сожалению, это очень ошибочное представление об электричестве.

Для наглядности я подготовил две простенькие схемы, надеюсь, Вы в них разберетесь.

Схема № 1

Рассмотрим первую схему:

электрика в квартире

Здесь все очень просто. Наверху висит люстра (Лампа). Виден уровень потолка, из которого выходят 2 провода. Дальше эти 2 провода идут в выключатель. С другой стороны к выключателю из пола, через стену идут другие провода, несущие «Землю» и «Фазу».

Чтобы лампочка зажглась, нужно на один из ее концов подать «Землю», а на другой конец — «Фазу». Это общий принцип включения любого электрического прибора.

Однако, есть очень важный момент! В не зависимости от того, включен выключатель или выключен, на «Фазе» всегда существует напряжение. Поэтому-то такой провод «L», если он оголен, всегда прячут в розетках или распределительных коробках. Если Вы посмотрите на картинку, то увидите, что «Фаза» пришла в выключатель и сейчас там «живет». Но лампочка загорится только тогда, когда контур замкнется. И вот случай, показанный на этой картинке, действительно безопасный. Если мы выключим выключатель, то лампу просто можно менять голыми руками, т. к. к ней подводятся пустые провода, ничего не несущие.

Схема № 2

Рассмотрим вторую схему:

соединение проводов

Тот же пол, тот же потолок, та же лампа и тот же выключатель. Но обратите внимание на схему. Из потолка также выходят 2 провода, к которым нужно подсоединить лампу. Один провод — это «Фаза», на котором напряжение живет всегда. Поэтому включим мы выключатель или выключим, суть от этого не поменяется. Лампа действительно либо зажжется, либо погаснет. Но вот провод «L» всегда будет находиться под напряжением!

Сразу скажу, что второй вариант разводки проводов в квартире будет более опасный, т. к. Вы по не знанию можете выключить выключатель и приступить к замене лампы, думая, что напряжения там нет. В результате получите удар током и можете от шока упасть со стула, на котором стояли и закручивали провода.

Поэтому, крайне важно, когда меняете люстру, всегда пользуйтесь пробником. Ориентируйтесь только на него. Ведь Вы точно не знаете, как в стенах у Вас идет проводка. Пробник в таких ситуациях будет Вашим надежным другом и поможет избежать беды.

Интересно, если Вас однажды ударило током, Вы пытались разобраться самостоятельно, в чем было дело?

Направление электрического тока

Электрическому току приписывают определенное направление. За направление тока принимают направление движения положительно заряженных частиц. Поэтому если ток образован движением отрицательно заряженных частиц, то направление тока считают противоположным направлению движения частиц. Такой выбор направления тока не очень удачен, так как в большинстве случаев ток представляет собой движение электронов — отрицательно заряженных частиц. Выбор направления тока был сделан в то время, когда о свободных электронах в металлах еще ничего не знали.

О чем говорят время-токовые характеристики

О работе автоматических выключателей судят по время-токовым характеристикам (ВТХ), определяющим точный период срабатывания защитного устройства. Наверняка, вы сталкивались с тем, что в маркировке автоматов участвуют буквенные обозначения: B, C, D.

Это ВТХ автоматических выключателей, ток мгновенного их срабатывания. Другими словами, это наименьший ток, при котором автоматический выключатель разорвет цепь без задержки времени (ГОСТ 50345-2010, п. 3.5.17). Так работает его электромагнитная защита (реагирующая на ток короткого замыкания).

Рассмотрим время-токовую характеристику С. На графике видно, как зависит от тока, проходящего через автомат, время его срабатывания. Вертикально расположенная ось У (ординат) показывает время (секунды).

Читайте так же:
Выключатели розетки рамки simon

время токовая характеристика C

Горизонтальная ось Х (абсцисс) – отражает отношение тока в цепи к номинальному току коммутационного аппарата (I/In). Простыми словами это параметр показывает загруженность (перегруз) автоматического выключателя.

ток неотключения автоматического выключателя

График представлен в виде двух кривых, показывающих временной диапазон действия теплового и электромагнитного расцепителя автомата.

характеристика срабатывания автомата

Расположенная сверху кривая определяет холодное состояние, когда автомат предварительно не включался. Кривая, расположенная ниже, характеризует горячее состояние, когда автомат уже был включен в сеть и (или) произошло его защитное срабатывание.

Чтобы получить доступ к этому и другим видеоурокам комплекта, вам нужно добавить его в личный кабинет, приобрев в каталоге.

Получите невероятные возможности

Конспект урока «Электрический ток. Сила тока»

С понятием электрического тока вы познакомились еще в восьмом классе. Напомним, что электрический ток — это упорядоченное движение заряженных частиц.

Как мы знаем, все тела состоят из частиц, и эти частицы совершают беспорядочные движения. В частности, свободные электроны в металле участвуют в тепловом движении. В этом случае, через поперечное сечение проводника в среднем проходит одинаковое число электронов в обе стороны. Для того, чтобы все частицы начали двигаться направлено, в проводнике должно существовать электрическое поле. В этом случае, под действием электрического поля, свободные заряды начнут смещаться в определенном направлении. Как вы уже знаете, за направление электрического тока принято направление движения положительно заряженных частиц. Надо сказать, что это не очень удачный выбор, поскольку, чаще всего, ток представляет собой движение электронов, которые являются отрицательно заряженными частицами. Хотя, ток также может быть вызван движением положительных ионов.

В ближайшее время мы будем рассматривать простейший случай электрического тока, который называется постоянным током. Постоянный ток — это электрический ток, при котором заряженные частицы не изменяют ни направление, ни скорость своего движения.

Конечно, мы не имеем возможности увидеть движение частиц в проводнике. Об электрическом токе мы привыкли судить по его действиям. Напомним, что существует тепловое, химическое и магнитное действие электрического тока.

Как вы знаете, электрический ток сопровождается нагреванием проводников, то есть, тепловым действием. Это действие широко используется при создании электронагревательных приборов, таких, как, например, утюг, обогреватель или чайник. Также при протекании электрического тока по определенным проводникам, может измениться их состав (то есть ток оказывает химическое действие). Это действие успешно используется для очистки металлов от примеси, например, или для разложения солей и щелочей на составные части.

Кроме этого существует магнитное действие: вокруг любого проводника с током возникает магнитное поле. Примеров использования этого действия можно привести очень много: к примеру, на магнитном действии тока основан электромагнит, генератор и многие электроизмерительные приборы. Также, магнитное действие тока легло в основу единицы измерения силы тока, о которой мы и поговорим. Напомним, что сила тока определяется как отношение заряда, прошедшего через поперечное сечение проводника за определенный промежуток времени к этому промежутку времени:

Единицей измерения силы тока является ампер:

Как вы уже знаете, если по проводникам, находящимся вблизи пустить ток в одном направлении, то они начнут притягиваться, а если по ним пустить ток в разных направлениях, то они начнут отталкиваться. Это явление возникает как раз в результате магнитного действия тока. Так вот, если по очень длинным и тонким проводникам, находящимся на расстоянии 1 м друг от друга, проходит одинаковый ток, при котором сила их притяжения или отталкивания составляет 0,2 мкН, то сила тока в этих проводниках равна 1 А.

Конечно, нужно понимать, что, несмотря на подобное определение силы тока, слово «сила», применяемое к току, не имеет ничего общего с понятием силы в механике. Сила тока, скорее характеризует скорость прохождения электрического заряда через поперечное сечение проводника.

Читайте так же:
Величина тока короткого замыкания автоматического выключателя

Давайте попытаемся установить связь между силой тока и скоростью движения электронов в металлическом проводнике цилиндрической формы.

Рассмотрим небольшой участок проводника длиной.

Применим формулу, по которой вычисляется сила тока:

Очевидно, что суммарный заряд, прошедший через поперечное сечение толщиной l, будет равен произведению количества частиц, находящихся в данном участке проводника, и величины заряда одной частицы:

Поскольку в нашем случае, частицы — это электроны, за заряд частицы следует принять модуль заряда электрона. Число частиц мы можем представить, как произведение концентрации и объема:

Не трудно догадаться, что объем, в данном случае, — это

Подставим полученное выражение в уравнение для силы тока:

Заметим теперь, что отношение длины к промежутку времени— это и есть скорость движения электронов:

Выразим скорость из полученного выражения:

Теперь мы можем заключить, что скорость движения частиц в проводнике прямо пропорциональна силе тока. Конечно, концентрация заряженных частиц в данном объеме проводника зависит от того, из какого вещества состоит проводник. Мы можем подсчитать скорость электронов в медном проводнике с поперечным сечением 1 мм 2 при силе тока в 1 А. Наши расчеты будут основываться на предположении, что на каждый атом меди приходится один свободный электрон.

Если мы подсчитаем скорость движения электронов в других металлах, то она не будет сильно отличаться. Это говорит нам о том, что скорость движения электронов очень невелика. Возникает вопрос, как же тогда получается так, что когда мы включаем свет в комнате, лампочка загорается мгновенно? Дело в том, что скорость распространения электрического тока зависит не от скорости движения самих зарядов, а от скорости распространения электрического поля.

Как мы уже убедились ранее, эта скорость равна скорости света. Поэтому, смело можно считать, что при нажатии на выключатель, все электроны в цепи приходят в движение мгновенно, немедленно создавая электрический ток в лампочке.

Итак, теперь мы можем оговорить условия, необходимые для существования электрического тока: наличие свободных зарядов, наличие электрического поля и замкнутость цепи.

Как мы уже сказали, в первую очередь, необходимо наличие свободных зарядов, иначе никакого упорядоченного движения частиц не возникнет, ввиду отсутствия этих самых частиц. Второе условие — это наличие электрического поля. Чтобы заряды двигались в определенном направлении, на них должна действовать определенная сила. Эта сила, как мы знаем, прямо пропорциональна напряженности электрического поля. То есть для существования тока, необходимо наличие электрического поля, со стороны которого будет действовать сила, приводящая заряды в упорядоченное движение. Ну и, конечно, как мы только что убедились, для существования электрического тока, нужна замкнутая цепь. В противном случае, заряды просто накопятся на концах проводника и сами начнут создавать электрическое поле. То есть возникнет явление электростатической индукции и суммарная напряженность поля внутри проводника станет равной нулю, а, значит, перестанет существовать электрический ток. Поэтому, необходимо, чтобы цепь была замкнута, и заряды продолжали перемещаться. Заметим, однако, что при перемещении зарядов по замкнутому контуру, работа электрического поля равна нулю. Поэтому в цепь необходимо включить источник тока. Между полюсами источника существует определенная разность потенциалов, поэтому, в проводнике возникает электрический ток. Для измерения силы тока, как вы знаете, используется амперметр, который включается в цепь последовательно.

Следует отметить, что, все-таки, необходимость замкнутости электрической цепи для существования электрического тока, вызывает сомнения. Еще в 1897 году, величайший ученый и изобретатель Никола Тесла теоретически обосновал передачу электрического тока с помощью волновода и проводил соответствующие эксперименты. То есть, от одного заряженного тела энергия передавалась другому телу по одиночному проводу. Причем, этот провод, не являлся проводящим. Он, скорее, являлся направляющим проводом, который определял направление передачи электромагнитной энергии. На сегодняшний день российскими учеными разработана установка, позволяющая осуществить идею Николы Тесла, но, пока что, этот метод не торопятся внедрять в жизнь. Тем не менее, этот метод принципиально отличается от того, метода, который используется в настоящее время. Поэтому, при изучении законов постоянного тока мы, все же будем считать замкнутость электрической цепи необходимым условием для существования электрического тока.

Читайте так же:
Выключатель запрещения пуска мазда

Скорость тока не равна скорости света! : 11 комментариев

  1. None 13.06.2019

Ну ла епт посмотрел бы как свет распространяется в проводнике у вас…

Это даже не машинный перевод с английского, это перевод с китайского. Типа, Али.

Статья для тех, кто плохо учился в школе.
Скорость свободных электронов и скорость электрического тока – это не одно и то же.

Ток имеет две составляющие:
1) ток сверхпроводимости, как туннелирование зарядов в фотоно-зарядовой среде электронного облака;
2) ток потерь, как движение электронов, обеспечивающих непрерывность фотоно-зарядовой среды, как электронного облака.

Доля второй составляющей в проводниках ничтожна и идет на разогрев проводников. Скорость движения электронов также невелика.

Основная доля – это ток сверхпроводимости. Заряды не путать с электронами и позитронами. Скорость зарядов в проводнике, по крайней мере, не меньше скорости света.

Скорость тока обусловлена не скоростью движения носителей электричества, электронов и ионов, а скоростью распространения электрического поля, а она равно скорости света.

Не надо путать скорость движения электрических зарядов со скоростью передачи напряжения. Скорость распространения напряжения и скорость света должны быть соизмеримы. Это передача давления/разрежения в эфире вакуума (около 300 000 км/с).

Впечатление такое, что автор даже школьные уроки физики прокурил в туалете.
Скорость тока как скорость движения заряженных частиц — объектов, имеющих ненулевую массу покоя, никогда не достигнет скорости света — специальная теория относительности это не позволяет.
А вот скорость распространения тока всегда и в точности равна скорости света в вакууме.
Потому что по сути в каждом случае это скорость распространения электромагнитного поля — одного и того же природного явления.

  1. Русаков 02.08.2019

Если рассмотреть точку как энергетическое поле, то на основании Закона Проективности точка превращается в бесконечную линию которая обладает той же энергетикой, что и точка в любой точке бесконечной линии! Ну, где-то так… Отсюда, скорость передача энергии в космологическом пространстве ЭФИРА на порядки превышает скорость распространения света по-Эйнштейну!

Поздравляю с открытием природы электрического тока!

Скорость тока бесконечна. Я это могу доказать. Представьте ниточку, длиной 1 млн км. А теперь, давайте дернем за конец ниточки с одной стороны. Как вы думаете, через сколько времени дернется второй конец ниточки? А ниточка – это проводник.
Если на одном конце не станет тока, то на другом конце мгновенно исчезнет ток. Почему?
Потому что ток это не один электрон, а цепочка электронов, которые двигаются, пока замкнута цепь. При разрыве цепи движение электронов прекращается мгновенно на всей цепи, каким длинным ни был проводник.

Еще ни кто толком не объяснил, что вообще такое электрический ток,его природу, свойства, возможности – так домыслы, предположения. Один великий Н.Тесла знал, но объяснить не смог или не хотел, зная, что понять его не смогут. Посмотришь на учебники по электричеству, типа учебника по ТОЭ, – и оторопь берет: 10 см. толщины книги оказываются бессильными объяснить что такое электричество. И всё потому, что авторы сами блуждают в догадках и предположениях.

голоса
Рейтинг статьи
Ссылка на основную публикацию
Adblock
detector