Kuhni-nn.ru

Кухни НН
0 просмотров
Рейтинг статьи
1 звезда2 звезды3 звезды4 звезды5 звезд
Загрузка...

Способы защиты от обрыва или отгорания нуля

Способы защиты от обрыва или отгорания нуля

Всем известно, что ток в электрической сети течет по замкнутому контуру, питая при этом разнообразную бытовую технику и промышленное оборудование. Сеть подачи электроэнергии в частные дома, квартиры и дачи является одним из направлений распределения электричества в глобальной системе энергоснабжения разнообразных объектов. Все это говорит о том, что для питания бытовых электроприборов необходимы как минимум два электрических проводника, которые создадут замкнутую цепь электропитания домашней техники.

Защита обрыва

Эти проводники называются фазным (L) и рабочим нулевым (N). «Ноль» не опасен для человека при прикосновении к нему, так как на нем отсутствует напряжение сети. Но это не значит, что через него не протекает электрический ток. В идеальном случае, в однофазной сети, величина тока, проходящего через фазный проводник полностью совпадает со значением этого параметра, протекающего через нейтральный провод. В этой статье мы рассмотрим вопрос, причины обрывы или обгорания нулевого проводника, что происходит в случае такой аварийной ситуации, последствия этой аварии и какая защита от обрыва «нуля» способна исключить такое негативное явление.

Защита обрыва 2

Внимание! Обгорание нейтрального проводника в трехфазной магистральной линии электроснабжения способен вызвать изменение величины напряжения от минимального до максимального значения в 380 В, а обрыв «нуля» внутренней электропроводки обесточит сеть с появлением фазы на нулевом контакте розетки.

Преимущества [ править | править код ]

  • Экономичность.
    • Экономичность передачи электроэнергии на значительные расстояния.
    • Меньшая материалоёмкость 3-фазных трансформаторов.
    • Меньшая материалоёмкость силовых кабелей, так как при одинаковой потребляемой мощности снижаются токи в фазах (по сравнению с однофазными цепями).

    Благодаря этим преимуществам, трёхфазные системы наиболее распространены в современной электроэнергетике.

    Пробуем экономить

    Схема трехфазного электрощита на 4-полюсных УЗО и однополюсных автоматах

    В самом бюджетном из вариантов защита отключаемых линий организована четырехполюсными УЗО и однополюсными автоматами под ними. Схема имеет право на жизнь и скажу больше — ооочень популярна из-за цены. Чем же мы жертвуем здесь в погоне за низкой ценой? А жертвуем мы удобством эксплуатации в первую очередь. Вот что я имею ввиду. Каждая линия в этой схеме имеет в собственности лишь один полюс (это фаза на автомате) и вынуждена мириться с общей нулевой шиной, которую она делит с соседями по группе (УЗО).

    Теперь представим, что срабатывает защита от токов утечки на одной из линий группы, скажем, стационаров. Одновременно выключаются все линии этой группы. При этом хорошо, если причиной стала утечка с фазы на землю. В этом случае мы сможем сразу же вернуть к жизни все линии группы, кроме той, где происходит утечка. Для этого отключаем все автоматы под сработавшим УЗО, включаем УЗО и снова поочередно включаем все автоматы под ним. Как только дойдете до проблемной линии, УЗО снова сработает, и теперь вы знаете какая линия проблемная и спокойно ее отключаете, взводите УЗО и включаете все остальные линии. После чего спокойно занимаетесь устранением проблемы.

    Если же включение любого из автоматов приводит к отключению УЗО, то защита срабатывает из-за утечки с нуля на землю. И вот в этом случае мы имеем отдыхающей всю группу под сработавшим УЗО вплоть до обнаружения и устранения проблемы с утечкой. Почему? Потому что проблемная линия сидит своим проблемным нулем на общей групповой шинке. И теперь даже чтобы понять какая из линий проблемная, надо вскрывать щит, вооружаться отверткой и отсоединять поочередно нули всех линий от шинки под сработавшим УЗО. И хорошо, если у вас есть знания и навык для этого. А если нет, ищи электрика.

    Как избежать такого счастья? Все просто. Раздайте каждой линии по собственному нулевому полюсу.

    Нейтраль трансформатора

    нейтраль трансформатора

    Трансформаторы имеют нейтрали, режим работы или способ рабочего заземления которых обусловлен:

    • требованиями техники безопасности и охраны труда персонала,
    • допустимыми токами замыкания на землю,
    • перенапряжениями, возникающими при замыканиях на землю, а также рабочим напряжением неповрежденных фаз электроустановки по отношению к земле,
    • пределяющих уровень изоляции электротехнических устройств,
    • необходимостью обеспечения надежной работы релейной защиты от замыкания на землю,
    • возможностью применения простейших схем электрических сетей.

    Используются следующие режимы нейтрали:

    • глухозаземленная нейтраль,
    • изолированная нейтраль,
    • эффективно заземленная нейтраль.

    Выбор режима нейтрали в электрических сетях определяется бесперебойностью электроснабжения потребителей, надёжностью работы, безопасностью обслуживающего персонала и экономичностью электроустановок. при однофазном замыкании на землю нарушается симметрия электрической системы: изменяются напряжения фаз относительно земли, появляются токи замыкания на землю, возникают перенапряжения в сетях. Степень изменения симметрии зависит от режима нейтрали.

    Глухозаземленная нейтраль

    Глухозаземленная нейтраль Глухозаземленная нейтраль трансформатора

    Если нейтраль обмотки трансформатора присоединена к заземляющему устройству непосредственно или через малое сопротивление, то такая нейтраль называется глухозаземлённой, а сети, подсоединённые к ней, соответственно, — сетями с глухозаземлённой нейтралью.

    Изолированная нейтраль

    Изолированная нейтраль

    Нейтраль, не соединённая с заземляющим устройством называется изолированной нейтралью.

    Компенсированная нейтраль

    компенсационная нейтраль

    Сети, нейтраль которых соединена с заземляющим устройством через реактор (индуктивное сопротивление), компенсирующий ёмкостной ток сети, называются сетями с резонанснозаземлённой либо компенсированной нейтралью.

    Сети, нейтраль которых заземлена через резистор (активное сопротивление) называется сеть с резистивнозаземлённой нейтралью.

    Электроустановки в зависимости от мер электробезопасности разделяются на 4 группы:

    • электроустановки напряжением выше 1 кВ в сетях с эффективнозаземленной нейтралью (с большими токами замыкания на землю),
    • электроустановки напряжением выше 1 кВ в сетях с изолированной нейтралью (с малыми токами замыкания на землю),
    • электроустановки напряжением до 1 кВ с глухозаземленной нейтралью,
    • электроустановки напряжением до 1 кВ с изолированной нейтралью.

    Режимы нейтрали трехфазных систем

    Напряжение, кВРежим нейтралиПримечание
    0,23Глухозаземленная нейтральТребования техники безопасности. Заземляются все корпуса электрооборудования
    0,4
    0,69Изолированная нейтральДля повышения надежности электроснабжения
    3,3
    6
    10
    20
    35
    110Эффективно заземленная нейтральДля снижения напряжения незамкнутых фаз относительно земли при замыкании одной фазы на землю и снижения расчетного напряжения изоляции
    220
    330
    500
    750
    1150

    Режим нейтрали оказывает существенное влияние на режимы работы электроприемников, схемные решения системы электроснабжения, параметры выбираемого оборудования.

    Назначение заземления нейтрали трансформатора для повышения чувствительности защиты от однофазных замыканий на землю.

    В нормальном режиме высокоомный резистор, и при необходимости дугогасящий реактор (ДГР) подключаются к нейтрали специального трансформатора заземления нейтрали (ТЗН).

    Чтобы обеспечить чувствительность и селективность защиты от ОЗЗ необходимо кратковременно увеличить ток через устройство защиты. Обоснование возможности кратковременного индуктивного заземления нейтрали специальным трансформатором заземления нейтрали. При возникновении на линии ОЗЗ трансформатор через 0,5 с кратковременно подключается выключателем к сборным шинам. Благодаря глухому заземлению нейтрали создается ограниченный индуктивностью ТЗН ток однофазного короткого замыкания, достаточный для обеспечения чувствительности от ОЗЗ и создания условия гашения дуги.

    Защита действует без выдержки времени на отключение линии. Выключатель с заданной выдержкой времени отключается. Отключение линии предотвращает двойные замыкания на землю (ДЗЗ) и многоместные замыкания на землю (МЗЗ), неизбежные в сетях напряжением 6-10 кВ с высокой изношенностью кабелей и оборудования.

    Такой режим отключения поврежденных кабельных линий несколько лет проходит опытную эксплуатацию в ОАО «Пятигорские электрические сети». Однако, отключение линий возможно только при наличии надежного резервирования и в случаях, оговоренных правилами устройств электроустановок.

    Предотвращения перехода ОЗЗ в ДЗЗ или МЗЗ осуществляется резистором Rн (см. рисунок 1), подключенным к нейтрали ТЗН. В нормальном режиме выключатель Q3) в цепи ТЗН отключен. При ОЗЗ срабатывают реле контроля изоляции KSV1 и (или) реле тока КА1, или устройство определения поврежденной фазы (см. рисунок 1).

    После замыкания контактов срабатывает реле времени КТ1, замыкающиеся контакты которого включают выключатель Q3. Выключатель Q3 шунтирует сопротивление Rн и ДГР.

    схема автоматического заземления нейтрали Рис.1 — Поясняющая схема и схема автоматического заземления нейтрали

    Замыкающиеся контакты реле КТ1 с выдержкой времени 0,3 с отключают выключатель Q3. При замыкании этих контактов срабатывает промежуточное реле KL1. Размыкающие контакты реле разрывают цепь КТ1. Возврат схемы осуществляется дежурным с помощью ключа SА. При этом реле К13 замыкает свои контакты в цепи реле КТ1. После отключения выключателя Q3 сеть вновь переходит в режим с заземленной нейтралью через высокоомное сопротивление и при необходимости через ДГР.

    При увеличении тока через реле срабатывает защита от ОЗЗ с действием на сигнал с выдержкой времени 0,2 с. Отключение выключателя выполняется с выдержкой времени 0,2 с. Сеть вновь переходит в режим с нейтралью, заземленной через резистор.

    Ошибки при выполнении монтажа УЗО

    Принцип работы и схема подключения УЗО в трехфазной сетиПример неправильного подключения УЗО

    Чтобы обеспечить стабильную и безопасную работу электросети, необходимо избегать следующих ошибок:

    • Входные клеммы УЗО подключаются к сети после специального автомата. Прямое присоединение категорически запрещено.
    • Необходимо правильно подключить и не перепутать нулевые и фазные контакты. Для облегчения этой задачи на корпусе устройств присутствуют специальные обозначения.
    • При отсутствии заземляющего проводника категорически запрещено заменять его проводом, накинутым на водопроводную трубу или радиатор.
    • При покупке устройств обращают внимание на их основные рабочие характеристики, величины токов. Если линия рассчитана на 50 А, прибор должен иметь минимум 63 А.

    При выполнении монтажа крайне важно соблюдать правила электробезопасности. Перед началом установки УЗО обесточивают сеть. Перед запуском устройства проверяют правильность монтажа элементов системы.

    Подключение трехфазного асинхронного двигателя на 220в.

    Бытовые электросети однофазные 220 вольт. Возникает вопрос, как подключить трехфазный двигатель к однофазной электросети? Да просто, небольшой электромотор, примерно до 1кВт – можно подключить, и даже имеется несколько схем. Не станем вдаваться в скучные расчеты, а рассмотрим рисунки и обсудим принцип работы.

    Подключение трехфазного асинхронного двигателя.

    Подключение трехфазного асинхронного двигателя

    На рисунках мы видим, как включить электромотор в сеть 220в. Фазу подсоединяем к U1 (С1) фазу, к V1 (C2) – ноль, а на свободную клемму W1 (C3) вешаем конденсатор. Для этих целей подойдут МБГО, МБГ4, К75-12, К78-17 МБГП, КГБ, МБГЧ, БГТ, СВВ-60 на 450 вольт. Расчет производится по формулам: для «Υ» C = , для «Δ» — C = , где С – емкость конденсатора, I – сила тока в амперах и U – напряжение в вольтах. Как определить ток, написано выше в главе «Выбираем автоматический выключатель и пусковое устройство». Обычно, найти требуемую емкость достаточно сложно, поэтому ее собирают из нескольких «кондеров», соединенных параллельно. Рассчитывается так С = С1+С2+Сn

    Подключение трехфазного асинхронного двигателя.

    Схема с конденсаторами

    После сборки и проверки производим кратковременный запуск, и если электродвигатель вращается не в ту сторону, переключаем конденсатор как показано ниже.

    Подключение трехфазного асинхронного двигателя

    Изменение направления вращения двигателя

    Если электродвигатель нагружен или мощность электромотора более 1 кВт, необходима дополнительная пусковая емкость. Как ее подсоединить, можно понять из иллюстрации. Она, как правило, выбирается в 2 раза выше, чем рабочая.

    Советы для правильного подключения дифавтомата своими руками

    Как говорилось ранее, лучше всего доверить установку дифавтомата квалифицированному электрику. Но для тех, кто хочет сделать это самостоятельно, приведем несколько советов для подключения:

    Правильно выбрать линию, часть сети, или сеть для защиты, которой предназначен дифавтомат. Так как универсальной схемы для правильного подключения дифавтомата своими руками не существует, необходимо тщательно разобраться, что именно вы хотите защитить, установив дифавтомат. Может быть это группа розеток? Отдельный прибор, или станок?

    Или же вся домашняя сеть?

    В случае если решили защищать всю сеть сразу и установить дифавтомат в щиток. Устанавливайте дифавтомат на вводном проводе. У данной схемы имеется ряд положительных и отрицательных качеств.

    К положительным качествам можно отнести: защиту одновременно всей сети, экономию средств (вы купите только один дифавтомат), занимает мало места. К отрицательным качествам отнесем: зависимость всей сети (при нарушении в какой-либо части сети будут выключены абсолютно все электроприборы дома), невозможно сразу определить, где произошла неполадка.

    В случае если решили защитить отдельные ветви электросети, производится установка дифавтоматов на каждую ветвь электросети, а также на наиболее энергопотребляющие приборы.

    Главной положительной характеристикой является уровень предлагаемой безопасности. Также можно выяснить в какой части сети произошел сбой. При возникновении перепада напряжения в одной части дома, будет обесточена лишь та часть, в которой это произошло.

    Очевидным минусом является большая стоимость одновременной покупки нескольких дифавтоматов. Также потребуется больше места для их установки.

    В заключении хотелось бы отметить, что в данный момент дифавтомат, представляет собой один из наиболее надежных способов защиты электросети вашего дома!

    голоса
    Рейтинг статьи
    Читайте так же:
    Как взять питание с выключателями
Ссылка на основную публикацию
Adblock
detector